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Abstract. In this paper, we consider ZD random packings of hard discs under gravity. We 
address the question of the nature of the typical packing of identical discs in the thermo- 
dynamic limit. We present numerical results on packings built by gravitational deposition 
of discs with random radii. Our results suggest that, in the limit of zero randomness: ( i )  
the convergence of the system towards its thermodynamic limit becomes extremely slow; 
( i i )  the limit packing fraction seems to increase drastically. We show in particular that if 
round-off errors are the only source of randomness of the system, the asymptotic regime 
cannot be reached because of the huge number of discs needed (at least 10l6 discs using 
single precision floating-point arithmetic). 

1. Introduction 

In this paper we consider random packings of discs under gravity: the model is 
two-dimensional, In 3~ (which is most often the experimental situation) it is well 
known that experimental packings of identical spheres give rise to disordered packings 
which exhibit a reproducible value of compacity [ 13, definitely different from the 
maximum value obtained in the case of the perfectly compact, centred cubic lattice. 
To our knowledge there is no explanation for this (almost) reproducible value of the 
packing fraction, but the origin of the disorder is well understood. Disorder originates 
from the frustration which occurs as soon as one tries to add new layers of identical 
spheres to a packing having the centred cubic geometry. In dimension 2, frustration 
plays a much less preponderant role; in particular, adding new layers of identical discs 
(or parallel cylinders, since those are most often used in experiments) over a 2~ packing 
having the maximum packing fraction (triangular lattice) automatically expands the 
triangular lattice. Thus one can wonder [ l ]  whether, in 2 ~ ,  the randomness induced 
by frustration is sufficient to ensure a thermodynamic limit (in the sense of infinite 
heights) to random packings of identical discs (thus, a reproducible asymptotic value 
of packing fraction), as seems to occur in 3 ~ .  

On the other hand numerical simulations [l-31 and experimental studies of real 
systems [4] have shown typical random packings of discs with a packing fraction of 
about 0.82; some theoretical approaches assess for this value [5]. But the question 
remains open: does there exist a typical two-dimensional random packing of identical 
discs? Typical in this case has an experimental meaning: this packing should be stable 
with respect to small random fluctuations of (for instance) the radii of the discs, or 
the geometry of the walls. 

We have processed numerical simulations of gravitational packings of discs. The 
radii of the discs are random (fluctuations between 0.1 and 0.001). We observed that, 
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as the randomness goes to zero, the asymptotic packing fraction increases drastically; 
but, as randomness decreases, the amount of calculation needed to reach the asymptotic 
regime increases so rapidly that it was impossible to get accurate information about 
the limit of zero randomness. 

We have recorded the coordinates of the discs’ centres; these data do not exclude 
that the high values of packing fraction we observed might be a hint of the existence 
of a limiting triangular lattice. 

2. The model 

Our model has already been considered in previous works (see e.g. [ 6 ] ) .  Rather than 
a semi-infinite rectangle we consider a semi-infinite cylinder: the base is a one- 
dimensional torus (the left-hand side of the packing is also its right-hand side). At 
each step of the simulation we drop a new disc at a random abscissa; no overlap of 
discs is allowed. As the disc reaches the top of the packing it rolls down the packing, 
according to gravity, until it finds a (statically) stable place in equilibrium over two 
other discs; then it sticks to the packing (it will not move any more) and a new disc 
may be dropped. If the disc rolls down to the bottom of the box, its abscissa is taken 
to be random. For the purpose of particular tests, we have built some packings over 
a first, regularly spaced, bottom layer. 

Furthermore, we can choose two different values R and r for the radii of the discs 
( R  > r ) :  for any new disc the radius is chosen at random between these two values 
with probabilities p and 1 - p .  Obviously, the only important quantities are p and the 
radii ratio R l r .  

Periodically we record the geometry of the top layer of the packing in order to 
compute the packing fraction and the statistical distribution of the angles of the 
‘associated lattice’. We call the associated lattice the lattice with its vertices at the 
centres of the discs and with its bonds joining the centres of any two discs in contact. 

We have considered packings with as many as 10’ discs. The difference from the 
previous simulations is that we use an explicit control of the randomness of the radii. 
As we shall see, the evolution of the packing (as more and more layers are added) is 
so slow that the fluctuation introduced by round-off errors alone is insufficient to reach 
the thermodynamic limit within reasonable computation times. 

The randomness that we introduce in our simulation is theoretically very important. 
Indeed, as we shall see in section 4, if all discs have exactly the same radius R, the 
asymptotic packing fraction of the packing is strongly related to the configuration of 
the bottom layer. In particular, depending on the choice for the bottom layer, one can 
get packing fractions from 714 (50.785, value for the square lattice, observed if any 
two neighbouring discs of the bottom layer are 2& R apart) to 7 /2& (50.907, value 
for the triangular lattice, if the space between bottom discs is 2R, or if it is 2 4  R ) :  
the problem is highly degenerated. We expect the randomness to suppress this 
degeneracy and to result in a unique thermodynamic limit (thus, a unique packing 
fraction value). 

3. The experimental results 

Our experimental results are summarized in figures 1 and 2. We have used R as the 
unit length. We have used the following values for the box width: 200, 400, 800 and 
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Figure 1. Plot of the asymptotic packing fraction of the packings against the percentage 
of small discs for two values of the radii ratio. The points of the case R / r =  1.02 for the 
extrema1 values of p (0.625% and 99.375%) are obtained from five samples of 50 000 000 
discs each. Each other point of the graph is obtained from five samples made of 1 000 000 
discs. The box width is equal to 200R. 
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Figure 2. Plot of the asymptotic packing fraction of the packings against the radii ratio 
for a 50% percentage of small discs. Each value is obtained from five samples made of 
1 000 000 discs. The box width is equal to ZOOR. The error bars are smaller than the plot 
symbols. 

1600; moreover, we have also used special values (multiples of 2 ,  of 2 4 ,  of 2&), 
and we have checked that the asymptotic behaviour does not depend at all on the 
precise value of the width. 

If the radii ratio is not too close to 1 and p is significantly different from both 0 
and  1 the system exhibits a satisfactory convergence: the packing fraction converges 
rapidly to a limit value, independently of the width of the box. But as randomness 
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decreases (radii ratio going to 1 or p going to 0 or  l ) ,  things go wrong: the convergence 
strongly slows down and  as we approach these singular values, the asymptotic packing 
fraction increases rapidly. For instance, for R / r  = 1.08, we were able to obtain with 
sufficient accuracy the packing fraction for values of p in [0.006 25, 0.993 751 by 
dropping 5 x lo6 discs (five samples of approximately lo6 discs) for each case; for a 
more singular radii ratio, ( R / r  = 1.02), the same number of discs provided good 
convergence only for p in [0.025,0.975], and  we had to drop 25 x lo7 discs (five samples 
of approximately 5 x lo7 discs) in order to deal with the extrema1 values of p .  

We give now some geometrical observations. By studying the statistics of the 
orientations of the bonds of the associated lattice, we observed that, at large disorder, 
the angles are regularly distributed, mainly between n/6 and n / 3 .  As randomness 
decreases, the distribution seems to become peaked, its average decreasing towards 
n / 6 .  This would be the case if the limiting lattice was the triangular lattice with 
orientations of the bonds equal to n/6 mod n/3 (‘vertical’ triangular lattice). If this 
was the case, the limiting packing fraction would be n/2J?; ( ~ 0 . 9 0 7 ) ;  in fact, we 
observed neither such a value nor a Dirac distribution of the bonds’ orientations. 
Remark 1. In figure 1, we see that the packing fraction is minimum for p = $, whereas 
one expects generally that the diagram p versus packing fraction of a binary mixture 
be concave, minimum for p = 0 and  p = 1, and maximum for an  intermediate value of 
p .  The explanation of this contradiction is that figure 1 was plotted for values of the 
radii ratio very close to 1. If this ratio becomes significantly larger than 1, the usual 
concavity appears for the intermediate values of p ;  but the ghost of the convex curve 
obtained in the limit R / r  = 1 seems to remain near the values p = 0 and  p = 1: the 
packing fraction reaches minimum values very close to p = 0 and p = 1, and  seems to 
go abruptly but still continuously to the maximum value n/2& for p exactly equal 
to 0 or 1. 
Remark 2. Even for the smallest randomness with which we were able to compute 
( R / r  = 1.001), the packing fraction is not at  all close to 0.907, and the orientations 
distribution is widely spread. A test of the stability of the triangular lattice would be 
valid only if the limiting lattice was a slightly distorted triangular lattice; this can 
happen only for very small randomness, which makes the test impossible since the 
needed amount of computation is prohibitive, as we shall see below. This explains 
why previous authors concluded that the asymptotic lattice is random; in particular, 
usual round-off errors are very small compared with 0.1%, which is the smallest amount 
of disorder for which our system could reach under reasonable computation times the 
asymptotic regime. 

4. Discussion 

4.1. Packings of equal discs without defects are periodic 

For simplicity, let us first describe the simplest packings of equal discs (with radius 
unity). Suppose that the first layer has n discs and is horizontal, and  that the distance 
between centres of successive bottom discs is never more than 2&. It is easy to see 
that no frustration occurs. The order in which the discs are successively depositt 1 is 
irrelevant for the geometry of the packing; each pair of neighbouring bottom discs 
will be covered by one disc of the next layer, and  so on; the concept of layer remains 
valid for all the packing and  each disc of the packing may be indexed by the number 
of the layer it belongs to. Each disc is in contact with two discs of the layer above it 



2 D random gravitational packing of hard discs 4475 

and with two discs of the layer below it; consider now the set made of two neighbouring 
discs of the same layer (denoted W and E for West and East), and of the two discs 
in contact with these two (one above denoted N, one below denoted S ) .  These discs 
form a lozenge, so that SE (i.e. the line joining the centres of S and E) is parallel to 
WN (and WS is parallel to NE); of course, a WN bond of layer i is a SE bond of 
layer i + 1, in other words SE orientations propagate towards the North-West direction. 
Thus, the set of the orientations of all the, say, SE bonds of layer i + 1 is the same as 
that for layer i: this set is conserved (figure 3 ) .  The same is true for the WS bonds, 
which propagate towards the North-East direction. 

n 

Figure 3. Detail of a packing having the lozenge structure. Although the packing is random, 
the three bonds drawn in bold have the same orientation. 

We recall that we consider horizontally periodic packings, as if the packings were 
built, not on a semi-infinite rectangle, but on a semi-infinite vertical cylinder. A packing 
built in a box, i.e. in a semi-infinite rectangle, would slightly complicate the description, 
since the propagating orientations would experience reflection on the walls. The sets 
of the orientations of SE and WS bonds shift in opposite directions each time a new 
layer is deposited. Thus, layers 1 and n + 1 are identical, up to a translation, so that 
the packing is periodic, with an oblique wavevector; the vertical extent of the vector 
describing the spatial period is the height of n layers. In particular, the asymptotic 
packing fraction C of the packing is the packing fraction of any subset made of n 
successive layers, and is given by: 

where CY, is given as a function of the successive abscissae x, . . . x, of the centres of 
the discs of the first layer by: 

CY, = cos-I((x,+, -x,)/4).  

Thus, depending on the positions of the bottom discs, C can take any value from n / 4  
( ~ 0 . 7 8 5 )  (all x, ,~ -x, equal to 2 f i )  to n / 2 A  ( ~ 0 . 9 0 7 )  (all x, ,~  -x, equal to 2 ~ 6 ,  or 
all equal to 2 ) .  

4.2. Packings of equal discs with defects seem eventually periodic 

Suppose now that, all discs being still perfectly identical, we allow distances between 
centres of successive bottom discs to be more than 2 8  (e.g. as in our algorithm). We 
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use hereafter the following definitions: a (respectively p )  is the generic notation for 
the angle (with respect to the horizontal direction) of SE and WN (respectively WS 
and NE) bonds; cr and p are in ]-7r/2, 7r/2] (e.g. for the two bottom layers, the cr 
angles are in 30, ~ / 3 ]  and the p angles are in [-7r/3,0[). According to the previous 
description, a and p angles propagate upwards ( a  going left and p going right); in 
the previous situation, the meeting of an a and a p created a lozenge with angle a -p. 
This will remain the case if a - p is in [ 7r/3,27r/3], otherwise a defect is created to 
the lozenge’s lattice. 

Here is a rough description of the simplest cases of creation of defects. Of course, 
more complicated cases may occur, especially if a - p  is far from [7r/3,27r/3]. If 
a - p < 7r/3 (‘flat defect’, figure 4(a)), S prevents N from touching simultaneously W 
and E, so that N forms an equilateral triangle with S and, either W, or E. If a - p > 2 ~ / 3  
(‘sharp defect’, figure 4(b)),  W and E cannot both be in contact with S: only the first 
ofthem (W, say) to be deposited will touch S. In the simplest cases, E will be deposited 
on W, so that N will form an equilateral triangle with W and E. 

Figure 4 ( a )  Since the orientations of SE and WS are too close to the horizontal direction, 
a flat defect is created. The two frustrated lozenges (dotted lines) are replaced by one 
equilateral triangle and one pentagon. The defect somehow suppresses pathologies, since 
W’N’ and N E  are less close to the horizontal direction than, respectively, SE and WS. ( 6 )  
Since the orientations of SE and W’W are too close to the vertical direction, a sharp defect 
is created. Again in this example, the defect improves things on the average: W”’ is slightly 
more vertical than SE but N’N is significantly less close to the vertical direction that W’W. 

Since the bottom layer is horizontal, flat defects are created before sharp ones. As 
far as the asymptotic properties of the packing are concerned, we need know what is 
the effect of the defects on the previously described propagation of the orientations. 
Although we are not able to give rigorous statements, we can describe the main effect 
of defects. We have made the geometrical calculations in the simplest cases, i.e. for 
defects which can be seen as perturbation of the regular (lozenge) case. In this 
framework, the defect is the perturbation of two neighbouring lozenges (one of which 
is the limit lozenge, i.e. it has angles 7r/3 and 2 ~ / 3 )  into one equilateral triangle and 
one neighbouring pentagon. Thus, we still can use the concept of propagation of a 
and p (the propagation through such a defect corresponds to two steps of the regular 
propagation), except that transmitted angles are now not exactly equal to incident 
ones (figure 4). 
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It is easy to see that the modification of the angles associated with these defects 
tends to suppress pathologies, in the sense that, if a - @  < 7r/3 (respectively a - @  > 
27r/3), the transmitted angles a ‘ a n d  @’satisfy a’-@‘> a - @  (respectively a ’ - P ’ <  a - 
@). Through this effect, initial a and @ angles are corrected each time they are involved 
in a defect, until all possible a - @  angles are in [57/3 ,2~/3] ;  for a sufficiently large 
system, this implies that a and ( -@) angles are in [57/6, 7r/3]: we are back to the 
previous, flawless, situation. 

We cannot make a rule that such a mechanism always takes place, leading after a 
finite number of layers to a periodic packing. Indeed, the rigorous rules of the 
propagation of a and @ angles are much more intricate than what the perturbative 
approach provides, in particular they involve neighbouring a and @ angles, and they 
are sensitive to the deposition order (which is governed by the random sequence of 
the dropping abscissae). Nevertheless, our numerical simulations are in agreement 
with this description of the effect of the defects since in this situation ( R / r  = 1, 
horizontal random bottom layer), we have always seen the flawless, periodic packing 
settle after a finite height. 

4.3. ‘Large’ Juctuations of the radii yield reproducible packing fractions 

(Here, large means approximately above 1’/0). Let us introduce now a fluctuation of 
the radii, namely a ratio R l r  # 1 and a rate p .  As we are interested in the typical 
packing of identical discs, we restrict discussion to values of R / r  close to 1. Still, we 
can consider the situation as a perturbation of the regular case; orientations still 
propagate through the packing, but they experience small variations when N, W, E 
and S have not all identical radius. If one considers that the variability of the radii is 
the main mechanism which governs the evolution of the angles, this diffusive process 
leads to an apriori regular equilibrium distribution of the angles, whence a non-singular 
asymptotic packing, and a typical packing fraction of such packings, as previously 
guessed [ 5 ] ,  around 0.82. 

In figure 5 ,  we compare the statistics of a - @  for large and (relatively) small 
randomness. These plots were obtained by recording the value of the angle between 
WN and NE as the disc N is deposited onto its neighbours W and E, for a large 
number of dropped N discs. Note that these statistics provide information about the 
defects; indeed, values of a - P  around 7r/3 (up to an uncertainty of the angle of 
order R / r  - 1) or over 2 ~ / 3  are the signatures of the defects. We observe indeed that, 
at large disorder ( R / r  = 1.08, p = O S ) ,  the distribution is quite flat, and almost sym- 
metrical with respect to a / 2 .  The bump around 7r/3, which is due to the N discs which 
deposit on contacting W and E (yielding triangles in the associated lattice), is quite 
important: as randomness is (relatively) large, the process of generation of defects 
(due to the random evolutions of the angles) is rather active. In some sense, this is 
the high-temperature phase of the system. 

4.4. The zero-randomness limit seems singular 

Unexpectedly enough, for a smaller disorder, the trend seems to be the creation of a 
peak near ~ 1 3 ,  which is compatible with the higher values of packing fraction recorded 
at small disorder (as has been checked). Note that the defects seem much rarer: the 
bump around a / 3  is less important. I f  the diffusive process described above was still 
preponderant, only the convergence speed would be modified, not the limit equilibrium. 
As this is not the case, we are led to assume that the dynamics induced by the occurrence 
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Figure 5. Plot of the distribution functions of the angles between neighbouring bonds for 
two values of the randomness. At small disorder, angles gather towards 60". The jump of 
the curve around 60" is the signature of the population of triangular defects. 

of the defects become relevant. Unfortunately, this occurs only for very small disorder, 
when the dynamics are very slow, so that it is numerically impossible to monitor the 
system for a value of the disorder small enough to enhance the effects of the defects 
with respect to the diffusive evolution of the angles; only such an enhancement would 
allow a conclusive observation of a sharp angle distribution. The next section provides 
some figures about the convergence speed. 

4.5. Calculation of the dynamics in the simplest case 

In general, it is not possible to compute analytically the evolution of the packing as 
its height increases. This computation is made possible if we restrict to a system with 
no defect, in the limit where R / r  is close to 1. It becomes easy if we start the packing 
with a regular bottom layer with inter-disc spacing equal to 2 d 2  R (which would yield, 
for R / r  = 1, the square lattice with all bond orientations equal to 77/4), and if we focus 
on the first step of the evolution, i.e. the destruction of the (square lattice) order. Of 
course, we have checked that this first step is followed by a second one which leads 
to the same asymptotic properties as indicated above, in particular ( a t  small disorder) 
the trend towards a (triangular lattice) order. 

For simplicity of calculation, let us now take the radii of the discs equal to: 

r = l + d r  d r  = * a  with equal probability a<< 1. 

As we restrict consideration to values of the height for which the lattice is still a small 
perturbation of the square lattice, we can index each disc by the number n of the layer 
it belongs to, the bottom layer being layer 1. At the first order in a (and omitting the 
terms which become negligible for n large) we can compute the shift of the position 
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Height 

of a disc belonging to layer n, with respect to its position for a = 0. The projection of 
this shift onto the North-West direction is 

2 dr, 
, = I  

where the indices refer to the ‘path’ of the sucessive SE neighbours, down to the 
bottom, starting from the considered disc. Then, it is easy to see that the shift of an 
a - p  (we denote this lozenge angle now as 0 )  belonging to layer n is: 

1 = 1  , = I  

where the upper indices 1, . . . , 4  refer to four different paths. If n is small with respect 
to the width of the packing, these four paths do not intersect: all dr: are independent 
random variables, so that do2 is of order 4na’. This estimate is enough to derive the 
value of the local packing fraction around layer n (for a sufficiently large system): 

C ( n ) =  ~ ( 0 ) ( 1 + 2 n a ’ )  

where C ( 0 )  = 7r/4 ( ~ 0 . 7 8 5 ) .  
We make a remark about the independency assumption. If n is large with respect 

to the box width, the paths intersect, but an easy calculation shows that the correlations 
induced by this finite-length effect cancel at the first order. Figure 6 shows the good 
fit of this estimate with the numerical results. 

More generally (for an arbitrary bottom layer), the diffusion of the angles at height 
h is of order ha2. In order to reach the asymptotic equilibrium, we need d e  to be at 
least 0.1 rad. Moreover, in order to get rid of the finite-width effect, this width must 

Packing fraction 
0.7862 

0.7860 

0.7858 

0.7856 

0.7854 

Figure 6. Evolution of the local packing fraction as a function of the height of the packing; 
the bottom layer has a regular interdisc spacing equal to 2 f i  R (square lattice). Here, 
R / r  = 1.001, p = 50% and the box width is an integer multiple of 2 f i  R,  close to 1600R. 
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be at least of order l / a .  Thus the number of discs to be dropped is at least of order 
l / (  100a3); this is why we did not use values of a below 5 x In fact, some works 
have been done in the past on boxes of width around 1000, for which the round-off 
errors were used as the only source of randomness. In the best case (single precision, 
a = lo-'), the limit cannot be reached before having dropped about l O I 3  layers of 
discs; this means packing approximately 1 O l 6  discs, a prohibitive amount. (A  hypothetic 
specialized machine able to build lo6 discs per second would have to run for 300 years 
to achieve this packing.) 

5. Conclusion 

We were interested in the typical geometry of gravitational packings of identical discs. 
As we have seen, fluctuations were necessary in order to reach a unique limit system. 
These fluctuations need to be large enough to trigger the dynamics of the defects and  
make it significant within the computation time limitations, but small enough not to 
mask it under the diffusion they generate. Due to restrictions of calculation power, we 
have built packings with u p  to 10' discs. The packing fraction we found (up  to 
0.826i7 x is actually still far from the maximum value 0.907; yet (see figure 1 )  
we suggest that the limit of zero randomness is singular, and that the typical gravitational 
packing of identical discs may be triangular. In other terms, this limit behaves like a 
zero-temperature phase transition. 
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